
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Unified Access Layer with PostgreSQL FDW for
Heterogeneous Databases

Abstract. Large-scale application systems usually consist of different databases
for different purposes. However, the increasing use of different databases, espe-
cially NoSQL databases, makes it increasingly challenging to use and maintain
such systems. In this paper, we demonstrate a framework to design a foreign da-
ta wrapper (FDW) for external data sources, then we use these FDWs of differ-
ent databases to build a unified access layer. We propose a novel method to ac-
cess heterogeneous databases including SQL and NoSQL databases in a unified
way. This method was tested in real business applications of Alibaba, in which
we were able to do various operations on Redis, MongoDB, HBase, and
MySQL by using a simple SQL statement. In addition, the information ex-
change and data migration between these databases can be done by using uni-
fied SQL statements. The experiments show that our system can maintain good
database performance and provide users with a lot more convenience and effi-
ciency.

Keywords: Unified access layer, Heterogeneous databases, Foreign data wrap-
per, HBase, MongoDB.

1 Introduction

In the big data era, traditional relational databases started to seem somewhat power-
less in the face of the massive data processing and analysis requirements. To fill this
gap in demand, a wide variety of non-relational NoSQL databases were developed.
However, the CAP theorem [2] states that it is impossible for a distributed computer
system to simultaneously provide all of the following three guarantees: consistency,
availability, and partition tolerance. Different NoSQL databases are designed and
built according to different feature orientations, which means that their schemas and
semantics of data may be significantly different. In a practical project, in order to
fully combine the advantages of using a variety of database capabilities, a large-scale
system will often integrate a variety of databases, including SQL and NoSQL, to sup-
port it. And this also brings some big challenges to the deployment and maintenance.
Different databases often stand on their own and have different APIs, with no uniform
standard at all. When a new database component is added, the development and
maintenance staff need to learn a new set of interfaces, test new drivers, and write
extract-transform-load (ETL) [3] components that exchange data with other data-
bases.

Typically, users must interact with these databases at the programming level with
customized APIs. This reduces portability and requires system-specific codes. There
exist many solutions which aim to integrate data from separated relational systems
into a new one. However, most NoSQL systems do not support SQL. Instead, more

attention has been paid to their different architectural design decisions in order to
achieve better scalability and higher performance. On the other hand, SQL systems
can be more portable and expressive, and also have the most trained users. Some
commercial companies have recognized this and combined an SQL relational proces-
sor with a MapReduce query processor [4]. However, many of the most popular
NoSQL databases, such as MongoDB and HBase, do not have SQL interfaces for
their systems.

In this paper, we demonstrate a framework to design a foreign data wrapper (FDW)
for external data sources, then we use these FDWs of different databases to build a
unified access layer. And we propose a method to build a unified access layer for
heterogeneous databases based on PostgreSQL, which can translate traditional SQLs
into the corresponding NoSQL database APIs to access heterogeneous database com-
ponents. In our system, the users only need to know SQL to operate all kinds of data-
bases transparently. And our system was tested in real business applications of Aliba-
ba, which convincingly confirms the usefulness of the method.

The main contributions of this paper are as follows:

─ We propose a framework to design a framework to design a FDW for external data
sources, and we realize FDWs for HBase and MongoDB by using this framework.

─ By using a uniform SQL abstraction layer, a database with different capabilities
hides the details, which can expose the performance characteristics of the hybrid
transactional/analytical processing (HTAP) system at the same time.

─ Our work can greatly reduce the complexity of development and maintenance be-
cause the staff responsible for development and maintenance can use SQL for all
the operations. In our system, ETL components can be achieved by writing SQL,
which can be much easier to understand.

2 Related Work

2.1 Heterogeneous databases integration solutions

Generally, data integration methods mostly aim to integrate data arising from differ-
ent SQL systems. For example, Inspur Company proposed a method to access differ-
ent types of relational databases1, but it did not consider the requirements of non-
relational databases. However, NoSQL systems play an important role in many do-
mains [10], especially in Big Data domains involving web data, which require sup-
porting millions of interactive users or performing analytics on terabytes of data, such
as web logs and click streams. It is very difficult to build a relational database for data
in these domains. As a result, a variety of NoSQL databases are created to handle
larger data volumes with better performance than relational systems [11]. There is
another major advantage of NoSQL databases: they are simpler and more flexible so
programmers can use them more easily.

1 Patent no. CN 101645074 A

To our best knowledge, there are only a few works which aim at standardization
for a variety of NoSQL systems and SQL systems. In [6], the Save Our System (SOS)
was proposed, which defined a common API for Redis, MongoDB, and HBase. It
makes it easy to access through different NoSQL databases, but it cannot handle
SQL-based access well and the main drawback of the method is that the expressive
power of the implemented methods is limited exclusively to single objects of NoSQL
systems. In [8], a relational layer supporting SQL queries and joins was added on top
of Amazon SimpleDB. SQL query conversion was done by using regular expressions
and rules rather than using a query parser and optimizer. However, it applies only to
Simple DB, and other NoSQL databases are not applicable. In fact, ISO/IEC 9075-
9:2008 has defined the SQL/MED, or Management of External Data, extension to the
SQL standard. We will further discuss SQL/MED in Sect. 3.

2.2 Challenges of heterogeneous databases integration

During information retrieval from heterogeneous source systems we have to face two
main challenges: (i) resolving the semantic heterogeneity of data including resolving
the structural (data model) heterogeneity of data and (ii) bridging differences of data
querying syntaxes.

Semantic heterogeneity means differences in meaning and interpretation of context
from the same domain. Semantic heterogeneity in schema level arises from synonyms
and homonyms of attributes [38]. A synonym problem occurs when the same real
world entity is named differently in different databases, and homonym problem oc-
curs when different real world objects (e.g. entities and attributes) have the same
name in different databases [38]. Structural heterogeneity (data model heterogeneity)
is arising from different modeling approaches and from the use of different data mod-
els. On one side, in a given type of data model, real world objects can be modeled in
different ways. On the other side, structural heterogeneity is further complicated if
data are represented in different data models. NoSQL systems do not implement the
traditional relational data model, and according to the implemented type of the data
model they can be divided into different types, including key-value stores, document
stores, MapReduce systems and graph databases [1]. Syntactic heterogeneities have to
be faced as well. SQL is a standardized programming language, designed for manag-
ing data stored in relational database management systems. However, NoSQL sys-
tems are based on different data models, they implement different access methods
which are not compatible with the SQL language.

Based on these heterogeneities we can see that data integration is a challenging
task. In this paper, we aim at building a unified access method which could hide the
specific details and heterogeneities of the various databases.

3 Management of External Data

The prototype system used PostgreSQL and MongoDB and allowed joining relational
data with data in MongoDB using the SQL/MED wrapper [5]. However, it is mainly
given as a concept rather than to achieve a highly available system.

SQL/MED provides extensions to SQL that define foreign-data wrappers and data-
link types to allow SQL to manage external data. External data is defined as data that
is accessible to, but not managed by, an SQL-based database management system
(DBMS). This standard can be used in the development of federated database systems
[13]. There are two current mainstream approaches based on SQL/MED:

Apache Drill is an implementation of SQL/MED. Apache Drill is a distributed sys-
tem for interactive ad-hoc analysis of large-scale datasets [14]. A single query can
join data from multiple databases [14]. In fact, Drill is a JDBC-based implementation
of various external data sources and it has been used for some SQL syntax extensions.
The main problem of Drill is that it requires independent operations and maintenance
support which means that it cannot handle databases well without schema.

PostgreSQL FDW is another implementation of the SQL/MED standard that pro-
vides an extension for managing external data sources. There are now a variety of
foreign data wrappers (FDWs) available that enable PostgreSQL server to access
different remote data stores, ranging from other SQL databases through to flat files
[15]. However, there are still a few problems with it: (i) Many NoSQL databases do
not have FDWs, such as HBase. (ii) Most of these wrappers are not officially support-
ed by the PostgreSQL Global Development Group (PGDG) and some of these pro-
jects are still in Beta version. Even for the FDW given by PGDG, it may still have
some mistakes. For example, MongoDB_FDW has some permissions and installing
errors.

Based on PostgreSQL FDW, we has done some effective work and tested our sys-
tem in an actual business system.

4 Overall Framework

In this paper, we carried out our research work based on a business system of Alibaba.
The system stores and maintains statistical information on many applications. Each
piece of statistical information uses application identification ‘app_id’ and business
date ‘date’ as the primary key, including various schema-free statistical indicators. As
a result, back-end data storage uses MongoDB and HBase. HBase stores historical
data and MongoDB maintains real-time statistical information.

This system needs to provide external queries of indicators and each line of busi-
ness needs different indicators. Each project team needs to write complex, repetitive
code to handle business data queries, including HBase and MongoDB data models,
the corresponding driver API, the agreed field format and serialization method, row-
key construction logic, and non-transparent sharding logic. From the project devel-
opment test to the acceptance may take a group 1 or 2 months, which is very costly. In

order to improve efficiency and avoid duplicate work, we built a unified access layer
for public data.

By building a unified access layer, some previous problems become easy to solve
and many pieces of complex codes can be changed to simple SQL statements. API
prototype development takes only a few minutes, greatly improving the efficiency of
development and business agility.

Later, databases such as MySQL, Redis, and others have been gradually added
through the public access layer, which greatly facilitates the R&D personnel who
need to maintain the business logic.

A framework of the system is shown in Fig. 1. In this system, PostgreSQL stores
the business metadata, HBase stores historical business data, MongoDB stores real-
time business data, and Redis is used as the cache. Based on PostgreSQL a unified
access layer is built and makes all the other databases SQL or NoSQL transparent for
users. By this way, users could use SQL to operate all these databases.

Fig. 1. Framework of the unified access layer system

5 Design FDW for External Databases

Based on the SQL/MED method, we used PostgreSQL FDW as a platform to manage
external data sources. In this section, we propose a design framework of FDW for
external databases. And as examples, we will introduce the design of the FDWs for
HBase and MongoDB following this framework.

5.1 Design Framework of FDW

As Fig. 2 shows, to design an FDW, we need firstly analyze the target API set of an
external databases. Since different databases always have different API set especially
for NoSQL-databases. For example, find () is used to realize the query function in
MongoDB database but get () or scan () may be used to do the same query in HBase
database. Hence only by knowing the API set of an external database could we know
which operations need to be added corresponding in FDW. Secondly, we have to
design different SQL syntax for different data storage methods. Unlike relational
databases, NoSQL databases tend to have their own unique data storage methods. So
we need to design corresponding SQL syntax for data definition language (DDL) of
external databases. Finally, we consider how to execute a complex query with a varie-
ty of constraints without much performance loss, and we called this process as condi-
tional pushdown.

Fig. 2. Design framework of FDW

Following this framework, we design two FDWs for HBase and MongoDB in a busi-
ness system, called HBase_FDW and MongoDB_FDW respectively.

5.2 Design of HBase_FDW

As a popular database, it is a pity that no FDW implementation for HBase is available
publicly. Maybe that is because HBase is a part of Hadoop’s ecosphere and it is quite
difficult to access HBase via non-Java languages. The HBase Protobuf interface is
only available after Version 0.96.

In this section, we firstly analyze the data model and API of HBase, then we design
the SQL grammar and the conditional pushdown of it. Our work is open-source and
you can access it on GitHub2.

Data Model and API
HBase is a Bigtable-like distributed database. It is a sparse long-term storage (on

the hard disk), multi-dimensional, sorted mapping table [16]. The index of this table is
the rowkey, the column family, and the timestamp. The data type of HBase is string,
with no other type. The user stores the data in the table, with each row having a sorta-
ble primary key and any number of columns. Because it is sparse storage, different
rows of the same table may have different numbers of columns. In short, the HBase
data model is a large table, the properties of which can be dynamically increased ac-
cording to the needs, but there is no relational query between the tables.

The HBase API consists: get, scan, put, and delete.

SQL Grammar
First we need to design a grammar for querying HBase.
FDWs manage foreign data as ‘relations’ (i.e., a table) so it is important to organ-

ize foreign data into tables. We establish an abstraction for HBase according to the
physical data model of HBase with the following quintuple:

 (rowkey, family, qualifier, timestamp, value)

We can index to a unique value so this quintuple could be a candidate. However, such
a schema design does not meet the usual data usage. The SQL syntax for data defini-
tion language (DDL) of external tables requires more elaborate forms of expression.

Then we design the fields in external tables. Firstly, because rowkey is the core de-
sign of HBase, it is necessary to include rowkey in the DDL. Secondly, for the col-
umn families and columns that we are interested in, we should put them as fields in
the DDL of the external tables. Because the distinction between column family and
column is not significant for the users, and column families are more likely to exist as
a physical storage-optimized hint message, we can put the column family and column
together, combined into the DDL column. Since the same family of data has the same
access pattern, it is also a good way to put column families in external table names or
additional parameters in external tables.

Because the data type of HBase is string, for the external table field type, from the
data model point of view, rowkey, column family, column, and value are stored in a
byte array, which does not contain any type information. Thus, the most common
standard method is to set the type of these fields as byte array, which is called
BYTEA in PostgreSQL.

In accordance with the above consideration, a sample DDL for an external data is
shown in Table 1.

2 https://github.com/Vonng/hbase_fdw

Table 1. A sample DDL for an external data

App_user_stat (table name in HBase)
Column name Type
rowkey BYTEA
active BYTEA
install BYTEA
launch BYTEA

Because all field types are byte array, the user needs to manually convert the query.
As Figure 2 shows, for the string users need to follow the encoding and decoding, and
for other data types, they need to process data according to different serialization
programs in the query statement. In this way, users can execute SQL operations on
data that they are interested in.

Fig. 3. The process of using byte array data

HBase itself has no type information, but through PostgreSQL DDL as Table 2
shows, we can add external data sources with the type information, which will make
reading and using more convenient.

Table 2. A sample DDL through PostgreSQL

App_user_stat (table name in HBase)
Column name Type Options
rowkey TEXT
timestamp TIMESTAMP
active INTERGER qualifier '1_day_active_count'
install INTERGER qualifier '1_day_install_count'
launch INTERGER qualifier '1_day_launch_count'

In this way, we can directly apply a variety of conditions in the SQL query and easily
filter the data.

SELECT rowkey,active,install,launch FROM app_user_stat

WHERE rowkey BETWEEN '9c9a' AND '9c9c' AND active > 0

 AND install > 0 AND rowkey ~ '^.{4}_.{10}_\w{24}' LIMIT
10;

The above-mentioned SQL generated the following execution plan in PostgreSQL:

Limit (cost=20.00..5020.00 rows=10 width=52)

 -> Foreign Scan on app_user_stat
(cost=20.00..50000000.00 rows=100000 width=52)

 Filter: ((rowkey >= '9c9a'::text) AND (rowkey <=
'9c9c'::text) AND (active > 0) AND (install > 0) AND
(rowkey ~ '^.{4}_.{10}_\w{24}'::text))

At the time of execution it will be HBase_FDW, translated as:

hbase.scan('app_user_stat',

 TScan(startRow='9c9a', stopRow='9c9c',

 columns=[TColumn('stat', '1_day_active_count'),

 TColumn('stat', '1_day_launch_count'),

 TColumn('stat', '1_day_install_count')],

 filterString="RowFilter(=, 'regex-
string:^.{4}_.{10}_\w{24}')"))

To achieve this goal, we need to complete the core issues of the FDW design: condi-
tional pushdown.

Conditional Pushdown
A practical system must meet the efficiency requirements. For FDW, the most crit-

ical step is conditional pushdown, which means translating the ‘where’ clause in an
SQL query statement to the corresponding external database API operation. Without
conditional pushdown, each query will be a full table scan, and Postgres has to carry
out conditional filtering after all the data is fetched to Postgres, which means the
whole system will be very inefficient with large-scale data. By adding conditional
pushdown in FDW, we could minimize performance overhead in the system as much
as possible.

For HBase, we have done the following work on its different operations3:

1. Unconditional query: we push it down to a full table scan.

 σ = scan

SELECT * FROM hbase.appuserstat_table;

2. Query with a rowkey: we push it down to the GET operation.

3 The first line of each condition is HBase API, and the second line is the corresponding SQL

statement.

 σ key = k = get(k)

SELECT * FROM hbase.appuserstat_table WHERE rowkey=k;

3. Query with rowkey’s size comparison condition: we push it down to SCAN’s star-
tRow and stopRow.

 σ k1<key<k2 = scan(startRow = k1, stopRow = k2)

SELECT * FROM hbase.appuserstat_table WHERE rowkey
BETWEEN k1 AND k2;

4. Query with an 'in' expression: we push it down to getMultiple operation.

 σ key belongs to {k1,k2,...,kn} = getMultiple([k1,k2,…,kn])

SELECT * FROM hbase.appuserstat_table WHERE rowkey in
(k1,k2,…, kn);

5. Query with the Regex or 'like' expression of a given rowkey: we push it down to
the combination of SCAN and RowFilter String.

σ key ~ regexp = scan(filter = “ RowFilter(=’regexstring : regexp’)”)

SELECT * FROM hbase.appuserstat_table where name REGEXP
regexp;

6. Query with the list of columns required: we push it down to column filter.

 σ column belongs to {c1,c2,...,cn} = scan(column = [c1,c2,…,cn])

SELECT * FROM hbase.appuserstat_table WHERE column in
(c1,c2,…, cn);

The above mentioned are all the fundamental operations of HBase. Any complex
operations can be split into a combination of these basic operations, so that can be
translated into the corresponding SQL statement.

5.3 Design of Mongo_FDW

For MongoDB, the PGDG has provided an FDW4, Mongo_FDW, designed for a rela-
tively complete set of rules, and mapping the SQL syntax to the MongoDB API. The
following describes how Mongo_FDW works.

Data model
MongoDB is a document-based NoSQL database, where Collection corresponds to

the concept of Relation in the relational database, and a Document corresponds to a

4 https://github.com/EnterpriseDB/mongo_fdw

Record [17]. The biggest difference between MongoDB and a relational database is
that Collection is schema-free, so each Document can optionally contain different
fields in MongoDB. Because SQL itself is used to query the structured data, when we
need to use the SQL syntax to access MongoDB some schemas are necessary for
Collection. It is very useful that the free expansion of the field can get very good sup-
port through the JSON type of PostgreSQL.

SQL grammar
In HBase we need to design Rowkey to put the application ID and date together. In

MongoDB, app_id and date are independent. The fields specified in the foreign table
DDL are reflected in the Projection parameter in the MongoDB API.

Conditional Pushdown
The conditional pushdown in Mongo_FDW is essentially a WHERE clause that

describes the Filter object of MongoDB. The Filter of MongoDB is represented by a
method called SON Manipulator5. Table 3 shows the correspondence in SON Manip-
ulator. The main work of Mongo_FDW is translating SQL statements to objects in
SON.

Table 3. The correspondence in SON Manipulator

SQL SON SQL SON
= $eq < $lt
> $gt In $in
>= $gte Not in $nin
<= $lte - regexp $regex
<> $ne

On the basis of the above work, we started to build up a unified access layer.

6 Unified access layer via PostgreSQL

In this section, we will give a practical example to illustrate how to build up a unified
access layer and to demonstrate the great convenience it brings.

We created two tables as shown in Table 4, in which a) corresponds to the histori-
cal data stored in HBase and b) is the real-time data stored in MongoDB. The table
consists of rowkey, active, install, and launch information.

Table 4. a) Foreign table of historical data

Appuserstat_history (table name in HBase)
Column Name TYPE OPTIONS
rowkey TEXT

5 http://api.mongodb.com/python/current/api/pymongo/son_manipulator.html

active INTEGER qualifier '1_day_active_count'
install INTEGER qualifier '1_day_install_count'
launch INTEGER qualifier '1_day_launch_count'

b) Foreign table of real-time data
Appuserstat_real-time (table name in MongoDB)

Column Name TYPE
app_id NAME
date DATE
active INTEGER
install INTEGER
launch INTEGER

After building the external table, an SQL statement will be translated into the API
of HBase or MongoDB and return the result.

Through these two DDL, we can see the difference between these two models. The
ideal interface should hide this difference. That is, when the date is today, the request
will be automatically routed to MongoDB and when the date is before today, the re-
quest will be routed to HBase accordingly. We use stored procedures in PostgreSQL
to complete the combination of real-time indicators and historical indicators, which is
so-called Lambda architecture.

Through this unified access layer, users can only use this simple form to query the
application of statistical data:

-- When query today's index, Route to MongoDB

SELECT * FROM appuser-
stat_merge('56444370e7e12af0561e221c', CURRENT_DATE);

-- When query historic index, Route to HBase

SELECT * FROM appuser-
stat_merge('56444370e7e12af0561e221c', ‘2016-02-02');

Any PostgreSQL driver, shell, or graphical user interface (GUI) can perform such a
query. This is just an example of a stored procedure to handle the construction logic
of rowkey and routing logic for real-time data and historical data. Some other func-
tions and logics, like sharding or routine, could also be done in this way.

In this section, we illustrated how the system works. However, it is only a part of
our system. That is, the unified access layer not only support HBase and MongoDB
but also supports Redis and MySQL, as Figure 1 shows. Moreover, our system has
strong scalability. If it is needed, more kinds of databases can be added.

7 Evaluation

For large-scale heterogeneous databases, the main costs involve the operation of the
database itself and the FDW only takes up a small part of the overhead. Thus the use

of FDWs does not have much impact on the efficiency of the system. At the same
time, there are many advantages of using FDWs, including accelerating the develop-
ment progress and making the system easier to maintain.

In order to test the performance of the system, we deployed two different systems
and used the same hardware conditions, which are Intel Dual-core and 2G memory.
One of them uses HBase as the single database with the original operation of HBase,
and the other one uses our system to access HBase through unified access layer. After
10,000,000 queries on the test, the comparison of these two systems in terms of query
per second (QPS) and request delay is shown in Table 5.

Table 5. Comparison between the two systems

Type of system CRUD QPS Request delay
HBase only 164.89 6.0465 ms
Through unified access layer 164.85 6.066 ms

Through the above comparative tests, we can see that using our system will not
significantly affect the efficiency.

And we have conducted statistical studies on the development of multiple projects,
Table 6 shows the comparison between system with unified access layer and previous
system. By using the unified access layer in UMeng of Alibaba Group. The original
few months of the workload can be done by only one person in just a few days. At the
same time, users can readily use Hbase, even without much information about the
data model or API of HBase. Whether the work is development, debugging, testing,
real-time monitoring, or ETL, many complex logics can be completed through SQL.

Table 6.

Project name Development cycle
With unified access layer No unified access layer

Project A

8 Conclusion

With the arrival of the big data era, a large system often consists of a variety of differ-
ent databases. Different databases have different data models and operations. To make
the systems easier to use, people have tried to find some ways to use heterogeneous
databases with a unified method. In this paper, based on a practical system, we de-
signed and implemented a unified access layer for heterogeneous databases.

We applied the FDW technology to our production practice in order to solve prac-
tical problems and we proposed HBase FDW to fill gaps in related fields. With only
SQL, we can perform operations on all the databases in this system and the experi-
mental results showed that the efficiency of our system was satisfactory. As more and
more advanced databases are being created and used, understanding how these data-
bases are used becomes time-consuming and laborious. We anticipate that in the fu-
ture unified access will become a trend and FDW technology will be widely used.

References

1. Patel J M. Operational NoSQL Systems: What's New and What's Next? [J]. Computer,
2016, 49(4):23-30.

2. E Brewer, “A certain freedom: thoughts on the CAP theorem[C],” Proceedings of the 29th
ACM SIGACT-SIGOPS symposium on principles of distributed computing. ACM, 2010,
pp. 335–335.

3. P Vassiliadis, “A survey of Extract–transform–Load technology [J],” International Journal
of Data Warehousing and Mining (IJDWM), 5(3), 2009, pp. 1–27.

4. H Yang, A Dasdan, R L Hsiao, et al., “Map-reduce-merge: simplified relational data pro-
cessing on large clusters[C],” Proceedings of the 2007 ACM SIGMOD international con-
ference on management of data, ACM, 2007, pp. 1029–1040.

5. R Lawrence, “Integration and virtualization of relational SQL and NoSQL systems includ-
ing MySQL and MongoDB[C],” Computational Science and Computational Intelligence
(CSCI), 2014 International Conference on IEEE, 1, 2014, pp. 285–290.

6. P Atzeni, F Bugiotti, L Rossi, “Uniform access to non-relational database systems: The
SOS platform[C],” International Conference on Advanced Information Systems Engineer-
ing, Springer Berlin Heidelberg, 2012, pp. 160–174.

7. R Vilaça, F Cruz, J Pereira, et al., “An effective scalable SQL engine for NoSQL data-
bases[C],” IFIP International Conference on Distributed Applications and Interoperable
Systems, Springer Berlin Heidelberg, 2013, pp. 155–168.

8. A Calil, R dos Santos Mello. “SimpleSQL: a relational layer for SimpleDB[C],” East Eu-
ropean Conference on Advances in Databases and Information Systems, Springer Berlin
Heidelberg, 2012, pp. 99–110.

9. J Tatemura, O Po, W P Hsiung, et al., “Partiqle: An elastic SQL engine over key-value
stores[C],” Proceedings of the 2012 ACM SIGMOD International Conference on Man-
agement of Data, ACM, 2012, pp. 629–632.

10. A Botta, W De Donato, V Persico, et al. “Integration of cloud computing and internet of
things: a survey [J],” Future Generation Computer Systems, 56, 2016, pp. 684–700.

11. S Venkatraman, K Fahd, S Kaspi, et al., “SQL Versus NoSQL Movement with Big Data
Analytics [J],” 2016.

12. J Roijackers, G H L Fletcher, “On bridging relational and document-centric data
stores[C],” British National Conference on Databases, Springer Berlin Heidelberg, 2013,
pp. 135–148.

13. J Melton, J E Michels, V Josifovski, et al., “SQL/MED: a status report [J],” ACM
SIGMOD Record, 31(3), 2002, pp. 81–89.

14. M Hausenblas, J Nadeau, “Apache drill: interactive ad-hoc analysis at scale [J],” Big Data,
1(2), 2013, pp. 100–104.

15. I Ahmed, A Fayyaz, A Shahzad, “PostgreSQL Developer's Guide [M],” Packt Publishing
Ltd, 2015.

16. L George, “HBase: The Definitive Guide: Random Access to Your Planet-Size Data [M],”
O’Reilly Media, Inc., 2011.

17. K Chodorow, “MongoDB: The definitive guide [M],” O’Reilly Media, Inc., 2013.

